H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.

D. Bates, M. Mächler, B. Bolker, and S. Walker, Fitting linear mixed-effects models using lme4, Journal of Statistical Software, vol.67, issue.1, pp.1-48, 2015.

J. Chang, I. Fisher, and J. W. , Parallel sampling of DP mixture models using sub-cluster splits, Advances in Neural Information Processing Systems, pp.620-628, 2013.

H. Chen, C. Leung, L. Xie, B. Ma, and H. Li, Parallel inference of Dirichlet process Gaussian mixture models for unsupervised acoustic modeling: A feasibility study, INTERSPEECH-16, 2015.

L. T. Decarlo, Signal detection theory and generalized linear models, Psychological Methods, vol.3, issue.2, p.186, 1998.

E. Dunbar, X. N. Cao, J. Benjumea, J. Karadayi, M. Bernard et al., The Zero Resource Speech Challenge, 2017 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp.323-330, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01687504

K. Gulordava, P. Bojanowski, E. Grave, T. Linzen, and M. Baroni, Colorless green recurrent networks dream hierarchically, Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol.1, pp.1195-1205, 2018.

D. F. Kleinschmidt and T. F. Jaeger, Robust speech perception: recognize the familiar, generalize to the similar, and adapt to the novel, Psychological review, vol.122, issue.2, p.148, 2015.

N. A. Macmillan and C. D. Creelman, Detection theory: A user's guide, 2004.

T. Mahrt, LMEDS: Language markup and experimental design software, 2016.

S. Peperkamp, Phonology versus phonetics in loanword adaptations, vol.335, pp.71-90, 2015.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek et al., The Kaldi speech recognition toolkit, IEEE 2011 Workshop on Automatic Speech Recognition and Understanding, 2011.

R. Riochet, M. Y. Castro, M. Bernard, A. Lerer, R. Fergus et al., IntPhys: A Framework and Benchmark for Visual Intuitive Physics Reasoning, 2018.

T. Schatz, ABX-discriminability measures and applications. Doctoral dissertation, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01407461

T. Schatz, F. Bach, and E. Dupoux, ASR systems as models of phonetic category perception in adults, Proceedings of the 39th Annual CogSci Meeting, 2017.

T. Schatz and N. Feldman, Neural network vs. HMM speech recognition systems as models of human cross-linguistic phonetic perception, Proceedings of the Conference on Cognitive Computational Neuroscience, 2018.

T. Schatz, V. Peddinti, F. Bach, A. Jansen, H. Hermansky et al., Evaluating speech features with the minimal-pair ABX task: Analysis of the classical MFC/PLP pipeline, INTERSPEECH 2013: 14th Annual Conference of the International Speech Communication Association, pp.1-5, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00918599

P. Senin, Dynamic time warping algorithm review, 2008.

M. Versteegh, X. Anguera, A. Jansen, and E. Dupoux, The Zero Resource Speech Challenge 2015: Proposed approaches and results, Procedia Computer Science, vol.81, pp.67-72, 2016.

M. Versteegh, R. Thiollière, T. Schatz, X. N. Cao, X. Anguera et al., , 2015.

, The Zero Resource Speech Challenge, INTERSPEECH-16, 2015.

F. Xu and J. B. Tenenbaum, Word learning as Bayesian inference, Psychological review, vol.114, issue.2, pp.245-272, 2007.