Gold nanofilms at liquid-liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors and electrovariable optics

Abstract : The functionality of liquid-liquid interfaces formed between two immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification with supramolecular assemblies or solid nanomaterials. The focus of this review is recent progress involving ITIES modified with floating assemblies of gold nanoparticles or "nanofilms". Experimental methods to controllably modify liquid-liquid interfaces with gold nanofilms are detailed. Also, we outline an array of techniques to characterise these gold nanofilms in terms of their physiochemical properties (such as reflectivity, conductivity, catalytic activity or plasmonic properties) and physical interfacial properties (for example, interparticle spacing and immersion depth at the interface). The ability of floating gold nanofilms to impact a diverse range of fields is demonstrated, in particular redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on applications beyond the state-of-the-art are provided.
Complete list of metadatas

Cited literature [111 references]  Display  Hide  Download

https://hal-univ-diderot.archives-ouvertes.fr/hal-01974503
Contributor : Jane Stockmann <>
Submitted on : Tuesday, January 8, 2019 - 6:31:44 PM
Last modification on : Thursday, February 7, 2019 - 5:07:48 PM

File

2018_Nanofilm_Review.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01974503, version 1

Collections

Citation

Micheál Scanlon, Evgeny Smirnov, Jane Stockmann, Pekka Peljo. Gold nanofilms at liquid-liquid interfaces: an emerging platform for redox electrocatalysis, nanoplasmonic sensors and electrovariable optics. Chemical Reviews, American Chemical Society, 2018, 118 (7), pp.3722-3751. ⟨hal-01974503⟩

Share

Metrics

Record views

34

Files downloads

129