F. Nimmerjahn and J. V. Ravetch, Fc?? receptors as regulators of immune responses, Nature Reviews Immunology, vol.203, issue.1, p.34, 2008.
DOI : 10.4049/jimmunol.172.11.7186

P. Bruhns and F. Jonsson, Mouse and human FcR effector functions, Immunological Reviews, vol.15, issue.Suppl, p.25, 2015.
DOI : 10.1096/fj.00-0378com

URL : https://hal.archives-ouvertes.fr/pasteur-01281740

M. D. Kazatchkine and S. V. Kaveri, Immunomodulation of Autoimmune and Inflammatory Diseases with Intravenous Immune Globulin, New England Journal of Medicine, vol.345, issue.10, p.747, 2001.
DOI : 10.1056/NEJMra993360

J. Bayry, V. S. Negi, and S. V. Kaveri, Intravenous immunoglobulin therapy in rheumatic diseases, Nature Reviews Rheumatology, vol.124, issue.6, p.349, 2011.
DOI : 10.1016/j.jaci.2009.07.051

E. W. Gelfand, Intravenous Immune Globulin in Autoimmune and Inflammatory Diseases, New England Journal of Medicine, vol.367, issue.21, p.2015, 2012.
DOI : 10.1056/NEJMra1009433

J. D. Lunemann, F. Nimmerjahn, and M. C. Dalakas, Intravenous immunoglobulin in neurology???mode of action and clinical efficacy, Nature Reviews Neurology, vol.11, issue.2, p.80, 2015.
DOI : 10.1111/ene.12513

L. Gilardin, J. Bayry, and S. V. Kaveri, Intravenous immunoglobulin as clinical immune-modulating therapy, Canadian Medical Association Journal, vol.187, issue.4, p.257, 2015.
DOI : 10.1503/cmaj.130375

URL : http://www.cmaj.ca/content/187/4/257.full.pdf

Y. Sultan, M. D. Kazatchkine, P. Maisonneuve, and U. E. Nydegger, Antiidiotypic suppression of autoantibodies to factor VIII (antihaemophilic factor) by high-dose intravenous gammaglobulin, Lancet, vol.2, p.765, 1984.

E. Konova, M. Atanasova, S. Stoykov, A. Velkova, and Y. Shoenfeld, Idiotypic and anti-idiotypic elastin autoantibodies: Implications for IVIg and pregnancy loss, Journal of Autoimmunity, vol.28, issue.1, p.46, 2007.
DOI : 10.1016/j.jaut.2006.11.002

M. Blank, L. Anafi, and G. Zandman-goddard, The efficacy of specific IVIG anti-idiotypic antibodies in antiphospholipid syndrome (APS): trophoblast invasiveness and APS animal model High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments, Int. Immunol. J. Clin. Invest, vol.19, issue.94, p.8571729, 1994.

H. U. Lutz, P. Stammler, and V. Bianchi, Intravenously applied IgG stimulates complement attenuation in a complement-dependent autoimmune disease at the amplifying C3 convertase level, Blood, vol.103, issue.2, p.465, 2004.
DOI : 10.1182/blood-2003-05-1530

T. V. Arumugam, S. C. Tang, and J. D. Lathia, Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death, Proceedings of the National Academy of Sciences, vol.70, issue.2, p.14104, 2007.
DOI : 10.1016/S0165-0270(96)00118-5

URL : http://www.pnas.org/content/104/35/14104.full.pdf

M. Basta, F. Van-goor, and S. Luccioli, F(ab)???2-mediated neutralization of C3a and C5a anaphylatoxins: a novel effector function of immunoglobulins, Nature Medicine, vol.19, issue.suppl. 3, p.431, 2003.
DOI : 10.1016/S0196-9781(97)00370-7

S. B. Clarkson, J. B. Bussel, R. P. Kimberly, J. E. Valinsky, R. L. Nachman et al., Treatment of Refractory Immune Thrombocytopenic Purpura with an Anti-Fc??-Receptor Antibody, New England Journal of Medicine, vol.314, issue.19, p.1236, 1986.
DOI : 10.1056/NEJM198605083141907

M. Debrée, M. C. Bonnet, and W. H. Fridman, Infusion of Fc?? fragments for treatment of children with acute immune thrombocytopenic purpura, The Lancet, vol.342, issue.8877, p.945, 1993.
DOI : 10.1016/0140-6736(93)92000-J

R. P. Junghans and C. L. Anderson, The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor., Proceedings of the National Academy of Sciences, vol.93, issue.11, p.5512, 1996.
DOI : 10.1073/pnas.93.11.5512

S. Akilesh, S. Petkova, T. J. Sproule, D. J. Shaffer, G. J. Christianson et al., The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease, J. Clin. Invest, vol.113, p.1328, 2004.

N. Li, M. Zhao, and J. Hilario-vargas, Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases, Journal of Clinical Investigation, vol.115, issue.12, p.3440, 2005.
DOI : 10.1172/JCI24394

P. Chen, C. Li, and S. Lang, Animal model of fetal and neonatal immune thrombocytopenia: role of neonatal Fc receptor in the pathogenesis and therapy, Blood, vol.116, issue.18, p.3660, 2010.
DOI : 10.1182/blood-2010-05-284919

A. R. Crow, S. J. Suppa, X. Chen, P. J. Mott, L. et al., The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia, Blood, vol.118, issue.24, p.6403, 2011.
DOI : 10.1182/blood-2011-08-374223

I. Schwab, A. Lux, and F. Nimmerjahn, Pathways Responsible for Human Autoantibody and Therapeutic Intravenous IgG Activity in Humanized Mice, Cell Reports, vol.13, issue.3, p.610, 2015.
DOI : 10.1016/j.celrep.2015.09.013

A. Samuelsson, T. L. Towers, R. , J. V. Samuelsson, A. Pollard et al., Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor Colonystimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease, Science Immunity, vol.291, issue.18, p.573, 2001.

Y. Kaneko, F. Nimmerjahn, R. , and J. V. , Anti-Inflammatory Activity of Immunoglobulin G Resulting from Fc Sialylation, Science, vol.313, issue.5787, p.670, 2006.
DOI : 10.1126/science.1129594

R. M. Anthony, F. Nimmerjahn, D. J. Ashline, V. N. Reinhold, J. C. Paulson et al., Recapitulation of IVIG Anti-Inflammatory Activity with a Recombinant IgG Fc, Science, vol.310, issue.5753, p.373, 2008.
DOI : 10.1126/science.1118948

N. Washburn, I. Schwab, and D. Ortiz, Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity, Proc. Natl. Acad. Sci. U S A, p.1297, 2015.
DOI : 10.1182/blood-2003-01-0023

R. M. Anthony, F. Wermeling, M. C. Karlsson, R. , and J. V. , Identification of a receptor required for the anti-inflammatory activity of IVIG, Proceedings of the National Academy of Sciences, vol.8, issue.6, 2008.
DOI : 10.1038/ni1470

R. M. Anthony, T. Kobayashi, F. Wermeling, R. , and J. V. , Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway, Nature, vol.182, issue.7354, p.110, 2011.
DOI : 10.4049/jimmunol.0802870

URL : http://europepmc.org/articles/pmc3694429?pdf=render

I. Schwab, S. Mihai, M. Seeling, M. Kasperkiewicz, R. J. Ludwig et al., Broad requirement for terminal sialic acid residues and Fc?RIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo Protection in antibody-and T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs, Proc. Natl. Acad. Sci. U S A, p.2385, 2014.

M. Sudo, Y. Yamaguchi, and P. J. Spath, Different IVIG glycoforms affect in vitro inhibition of anti-ganglioside antibody-mediated complement deposition IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist, Nat. Rev. Immunol, vol.14, p.349, 2014.

M. Sharma, Y. Schoindre, and P. Hegde, Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients, Scientific Reports, vol.18, issue.1, p.5672, 2014.
DOI : 10.1146/annurev.immunol.18.1.767

URL : https://hal.archives-ouvertes.fr/hal-01358914

M. S. Maddur, E. Stephen-victor, and M. Das, Regulatory T cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to intravenous immunoglobulin therapy Treatment response in Kawasaki disease is associated with sialylation levels of endogenous but not therapeutic intravenous immunoglobulin G, J. Neuroinflammation PloS one, vol.14, issue.8, p.81448, 2013.

K. Sehgal, X. Guo, and S. Koduru, Plasmacytoid Dendritic Cells, Interferon Signaling, and Fc??R Contribute to Pathogenesis and Therapeutic Response in Childhood Immune Thrombocytopenia, Science Translational Medicine, vol.96, issue.193, pp.193-89, 2013.
DOI : 10.1084/jem.20042592

J. Bayry, K. Bansal, M. D. Kazatchkine, and S. V. Kaveri, DC-SIGN and ?2,6-sialylated IgG Fc interaction is dispensable for the anti-inflammatory activity of IVIg on human dendritic cells, Proc. Natl. Acad. Sci. U S A, p.24, 2009.

F. Kasermann, D. J. Boerema, and M. Ruegsegger, Analysis and Functional Consequences of Increased Fab-Sialylation of Intravenous Immunoglobulin (IVIG) after Lectin Fractionation, PLoS ONE, vol.18, issue.6, p.37243, 2012.
DOI : 10.1371/journal.pone.0037243.s005

S. Q. Nagelkerke, G. Dekkers, and I. Kustiawan, Inhibition of Fc??R-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and Fc??RIIb in human macrophages, Blood, vol.124, issue.25, p.3709, 2014.
DOI : 10.1182/blood-2014-05-576835

S. Audia, K. Santegoets, and A. G. Laarhoven, Fc?? receptor expression on splenic macrophages in adult immune thrombocytopenia, Clinical & Experimental Immunology, vol.34, issue.2, p.275, 2017.
DOI : 10.1016/j.exphem.2006.03.009

X. Yu, S. Vasiljevic, D. A. Mitchell, M. Crispin, and C. N. Scanlan, Dissecting the Molecular Mechanism of IVIg Therapy: The Interaction between Serum IgG and DC-SIGN is Independent of Antibody Glycoform or Fc Domain, Journal of Molecular Biology, vol.425, issue.8, p.1253, 2013.
DOI : 10.1016/j.jmb.2013.02.006

T. Guhr, J. Bloem, and N. I. Derksen, Enrichment of Sialylated IgG by Lectin Fractionation Does Not Enhance the Efficacy of Immunoglobulin G in a Murine Model of Immune Thrombocytopenia, PLoS ONE, vol.73, issue.6, p.21246, 2011.
DOI : 10.1371/journal.pone.0021246.s003

I. K. Campbell, S. Miescher, and D. R. Branch, Therapeutic Effect of IVIG on Inflammatory Arthritis in Mice Is Dependent on the Fc Portion and Independent of Sialylation or Basophils, The Journal of Immunology, vol.192, issue.11, p.5031, 2014.
DOI : 10.4049/jimmunol.1301611

S. Othy, S. Topcu, and C. Saha, Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin, European Journal of Immunology, vol.127, issue.7, p.2059, 2014.
DOI : 10.1016/j.jaci.2010.12.1102

D. Leontyev, Y. Katsman, X. Z. Ma, S. Miescher, F. Kasermann et al., Mouse background and IVIG dosage are critical in establishing the role of inhibitory Fc?? receptor for the amelioration of experimental ITP, Blood, vol.119, issue.22, p.5261, 2012.
DOI : 10.1182/blood-2012-03-415695

M. Aloulou, B. Mkaddem, S. Biarnes-pelicot, and M. , IgG1 and IVIg induce inhibitory ITAM signaling through Fc??RIII controlling inflammatory responses, Blood, vol.119, issue.13, p.3084, 2012.
DOI : 10.1182/blood-2011-08-376046

URL : http://www.bloodjournal.org/content/bloodjournal/119/13/3084.full.pdf

H. Bouhlal, D. Martinvalet, and J. L. Teillaud, Natural Autoantibodies to Fc?? Receptors in Intravenous Immunoglobulins, Journal of Clinical Immunology, vol.417, issue.S1, pp.4-20, 2014.
DOI : 10.1007/978-1-4757-9966-8_56

V. Ruiz-de-souza, M. P. Carreno, and S. V. Kaveri, Selective induction of interleukin-1 receptor antagonist and interleukin-8 in human monocytes by normal polyspecific IgG (intravenous immunoglobulin) Fc?RIII-dependent inhibition of interferon-gamma responses mediates suppressive effects of intravenous immune globulin, Eur. J. Immunol. Immunity, vol.26, p.67, 1995.

L. K. Kozicky, Z. Y. Zhao, and S. C. Menzies, Intravenous immunoglobulin skews macrophages to an anti-inflammatory, IL-10-producing activation state, Journal of Leukocyte Biology, vol.10, issue.Suppl 1, p.983, 2015.
DOI : 10.3748/wjg.v10.i5.620

URL : http://www.jleukbio.org/content/98/6/983.full.pdf

C. Galeotti, P. Hegde, and M. Das, Heme oxygenase-1 is dispensable for the anti-inflammatory activity of intravenous immunoglobulin, Scientific Reports, vol.5, issue.Suppl 1, 2016.
DOI : 10.1038/ncomms5092

URL : https://hal.archives-ouvertes.fr/hal-01274079

K. Murakami, C. Suzuki, and F. Kobayashi, Intravenous immunoglobulin preparation attenuates LPS-induced production of pro-inflammatory cytokines in human monocytic cells by modulating TLR4-mediated signaling pathways, Naunyn-Schmiedeberg's Archives of Pharmacology, vol.1799, issue.9, pp.891-55187, 2001.
DOI : 10.1016/j.bbagrm.2009.11.019

J. Abe, T. Jibiki, S. Noma, T. Nakajima, H. Saito et al., Gene Expression Profiling of the Effect of High-Dose Intravenous Ig in Patients with Kawasaki Disease, The Journal of Immunology, vol.174, issue.9, p.5837, 2005.
DOI : 10.4049/jimmunol.174.9.5837

R. Raju and M. C. Dalakas, Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes, Brain, vol.128, issue.8, p.1887, 2005.
DOI : 10.1093/brain/awh518

M. Ghielmetti, M. Bellis, M. O. Spycher, S. Miescher, G. M. Vergeres et al., Gene expression profiling of the effects of intravenous immunoglobulin in human whole blood Binding of cytokines to pharmaceutically prepared human immunoglobulin, Mol. Immunol. J. Clin. Invest, vol.92, p.2533, 1993.

J. Bayry, S. Lacroix-desmazes, and C. Carbonneil, Inhibition of maturation and function of dendritic cells by intravenous immunoglobulin, Blood, vol.101, issue.2, p.758, 2003.
DOI : 10.1182/blood-2002-05-1447

J. Bayry, S. Lacroix-desmazes, and S. Delignat, Intravenous immunoglobulin abrogates dendritic cell differentiation induced by IFN-? present in serum from patients with systemic lupus erythematosus Modulation of dendritic cell development by immunoglobulin G in control subjects and multiple sclerosis patients, Arthritis Rheum. Clin. Exp. Immunol, vol.48, issue.150, p.397, 2003.

E. Aubin, R. Lemieux, and R. Bazin, Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation, Blood, vol.115, issue.9, p.1727, 2010.
DOI : 10.1182/blood-2009-06-225417

A. Smed-sorensen, M. Moll, and T. Y. Cheng, IgG regulates the CD1 expression profile and lipid antigen-presenting function in human dendritic cells via Fc??RIIa, Blood, vol.111, issue.10, p.5037, 2008.
DOI : 10.1182/blood-2007-07-099549

S. Othy, P. Bruneval, and S. Topcu, Effect of IVIg on human dendritic cell-mediated antigen uptake and presentation: Role of lipid accumulation, Journal of Autoimmunity, vol.39, issue.3, p.168, 2012.
DOI : 10.1016/j.jaut.2012.05.013

A. S. Tjon, R. Van-gent, and H. Jaadar, Intravenous immunoglobulin treatment in humans suppresses dendritic cell function via stimulation of IL-4 and IL- 13 production Contrasting mechanisms of IFN-? inhibition by intravenous immunoglobulin after induction by immune complexes versus Toll-like receptor agonists, J. Immunol. Arthritis Rheum, vol.192, issue.65, pp.5625-672713, 2013.

V. Siragam, A. R. Crow, D. Brinc, S. Song, J. Freedman et al., Intravenous immunoglobulin ameliorates ITP via activating Fc?? receptors on dendritic cells, Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations, pp.688-694255, 2006.
DOI : 10.1182/blood-2002-10-3078

S. Casulli, S. Topcu, and L. Fattoum, A Differential Concentration-Dependent Effect of IVIg on Neutrophil Functions: Relevance for Anti-Microbial and Anti-Inflammatory Mechanisms, PLoS ONE, vol.6, issue.10, p.26469, 2011.
DOI : 10.1371/journal.pone.0026469.g004

K. Yoshimura, K. Tatsumi, and A. Iharada, Increased nitric oxide production by neutrophils in early stage of Kawasaki disease, European Journal of Pediatrics, vol.55, issue.9, p.1037, 2009.
DOI : 10.1016/S0140-6736(94)92405-8

J. Chang, P. A. Shi, E. Y. Chiang, and P. S. Frenette, Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion, Blood, vol.111, issue.2, p.915, 2008.
DOI : 10.1182/blood-2007-04-084061

J. E. Jang, A. Hidalgo, P. S. Frenette, M. Vogel, and A. Schaub, Intravenous immunoglobulins modulate neutrophil activation and vascular injury through Fc?RIII and SHP-1 Intravenous immunoglobulin preparations contain anti-Siglec-8 autoantibodies, Circ. Res. J. Allergy Clin. Immunol, vol.110, issue.119, p.1005, 2012.
DOI : 10.1161/circresaha.112.266411

URL : http://circres.ahajournals.org/content/circresaha/110/8/1057.full.pdf

J. E. Ruiz, J. Y. Kwak, and L. Baum, Intravenous Immunoglobulin Inhibits Natural Killer Cell Activity In Vivo in Women With Recurrent Spontaneous Abortion, American Journal of Reproductive Immunology, vol.154, issue.4, p.370, 1996.
DOI : 10.1016/0167-5699(93)90235-D

M. S. Maddur, J. Vani, P. Hegde, S. Lacroix-desmazes, S. V. Kaveri et al., Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin, Journal of Allergy and Clinical Immunology, vol.127, issue.3, p.823, 2011.
DOI : 10.1016/j.jaci.2010.12.1102

M. S. Maddur, S. V. Kaveri, and J. Bayry, Comparison of different IVIg preparations on IL-17 production by human Th17 cells, Autoimmunity Reviews, vol.10, issue.12, p.809, 2011.
DOI : 10.1016/j.autrev.2011.02.007

M. S. Maddur, M. Sharma, P. Hegde, S. Lacroix-desmazes, S. V. Kaveri et al., Inhibitory Effect of IVIG on IL-17 Production by Th17 Cells is Independent of Anti-IL-17 Antibodies in the Immunoglobulin Preparations, Journal of Clinical Immunology, vol.129, issue.Suppl 1, pp.33-62, 2013.
DOI : 10.1016/j.jaci.2012.02.050

M. S. Maddur, M. Rabin, and P. Hegde, Intravenous immunoglobulin exerts reciprocal regulation of Th1/Th17 cells and regulatory T cells in Guillain-Barre syndrome patients Monomeric immunoglobulin A from plasma inhibits human Th17 responses in vitro independent of Fc?RI and DC-SIGN, Immunol. Res Front. Immunol, vol.60, issue.8, p.275, 2014.

M. M. Guo, W. N. Tseng, C. H. Ko, H. M. Pan, K. S. Hsieh et al., Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease, Allergy, vol.160, issue.Suppl 1, p.310, 2015.
DOI : 10.1001/archpedi.160.7.686

S. Othy, P. Hegde, and S. Topcu, Intravenous Gammaglobulin Inhibits Encephalitogenic Potential of Pathogenic T Cells and Interferes with their Trafficking to the Central Nervous System, Implicating Sphingosine-1 Phosphate Receptor 1-Mammalian Target of Rapamycin Axis, The Journal of Immunology, vol.190, issue.9, p.4535, 2013.
DOI : 10.4049/jimmunol.1201965

S. Y. Lee, Y. O. Jung, and J. G. Ryu, Intravenous immunoglobulin attenuates experimental autoimmune arthritis by inducing reciprocal regulation of Th17 and Treg cells in an interleukin-10-dependent manner Suppression of IL-4-and CD40-induced B-lymphocyte activation by intravenous immunoglobulin is not mediated through the inhibitory IgG receptor Fc?RIIb, J. Allergy Clin. Immunol, vol.110, p.480, 2002.

J. F. Seite, D. Cornec, Y. Renaudineau, P. Youinou, R. A. Mageed et al., IVIg modulates BCR signaling through CD22 and promotes apoptosis in mature human B lymphocytes, Blood, vol.116, issue.10, p.1698, 2010.
DOI : 10.1182/blood-2009-12-261461

URL : https://hal.archives-ouvertes.fr/hal-01150519

J. F. Seite, T. Guerrier, D. Cornec, C. Jamin, P. Youinou et al., TLR9 responses of B cells are repressed by intravenous immunoglobulin through the recruitment of phosphatase, Journal of Autoimmunity, vol.37, issue.3, p.190, 2011.
DOI : 10.1016/j.jaut.2011.05.014

URL : https://hal.archives-ouvertes.fr/hal-00771231

N. Amet, M. Gacad, A. Petrosyan, A. Pao, S. C. Jordan et al., In vitro effects of everolimus and intravenous immunoglobulin on cell proliferation and apoptosis induction in the mixed lymphocyte reaction, Transplant Immunology, vol.23, issue.4, p.170, 2010.
DOI : 10.1016/j.trim.2010.06.012

P. Proulx, D. Aubin, E. Lemieux, R. Bazin, and R. , Inhibition of B cell-mediated antigen presentation by intravenous immunoglobulins (IVIg), Clinical Immunology, vol.135, issue.3, p.422, 2010.
DOI : 10.1016/j.clim.2010.01.001

A. Kessel, R. Peri, and T. Haj, IVIg Attenuates TLR-9 Activation in B Cells from SLE Patients, Journal of Clinical Immunology, vol.160, issue.3, p.30, 2011.
DOI : 10.1182/blood-2009-12-261461

J. F. Seite, C. Goutsmedt, P. Youinou, J. O. Pers, and S. Hillion, Intravenous immunoglobulin induces a functional silencing program similar to anergy in human B cells, Journal of Allergy and Clinical Immunology, vol.133, issue.1, p.181, 2014.
DOI : 10.1016/j.jaci.2013.08.042

URL : https://hal.archives-ouvertes.fr/hal-00926676

M. S. Maddur, P. Hegde, M. Sharma, S. V. Kaveri, and J. Bayry, B cells are resistant to immunomodulation by ???IVIg-educated??? dendritic cells, Autoimmunity Reviews, vol.11, issue.2, p.154, 2011.
DOI : 10.1016/j.autrev.2011.08.004

B. D. Mazer and E. W. Gelfand, An open-label study of high-dose intravenous immunoglobulin in severe childhood asthma, Journal of Allergy and Clinical Immunology, vol.87, issue.5, p.976, 1991.
DOI : 10.1016/0091-6749(91)90420-S

Q. Zhuang and B. Mazer, Inhibition of IgE production in vitro by intact and fragmented intravenous immunoglobulin, Journal of Allergy and Clinical Immunology, vol.108, issue.2, p.229, 2001.
DOI : 10.1067/mai.2001.116291

D. Grandmont, M. J. Racine, C. Roy, A. Lemieux, R. Neron et al., Intravenous immunoglobulins induce the in vitro differentiation of human B lymphocytes and the secretion of IgG, Blood, vol.101, issue.8, p.3065, 2003.
DOI : 10.1182/blood-2002-06-1684

L. Pottier, L. Bendaoud, B. Dueymes, and M. , BAFF, a New Target for Intravenous Immunoglobulin in Autoimmunity and Cancer, Journal of Clinical Immunology, vol.192, issue.Suppl, p.257, 2007.
DOI : 10.1002/1521-4141(2002012)32:12<3414::AID-IMMU3414>3.0.CO;2-Y

URL : https://hal.archives-ouvertes.fr/hal-01103839

C. Ritter, D. Forster, P. Albrecht, H. P. Hartung, B. C. Kieseier et al., IVIG regulates BAFF expression in patients with chronic inflammatory demyelinating polyneuropathy (CIDP), Journal of Neuroimmunology, vol.274, issue.1-2, p.225, 2014.
DOI : 10.1016/j.jneuroim.2014.06.007

C. Galeotti, S. V. Kaveri, R. Cimaz, I. Koné-paut, and J. Bayry, Predisposing factors, pathogenesis and therapeutic intervention of Kawasaki disease, Drug Discovery Today, vol.21, issue.11, p.1850, 2016.
DOI : 10.1016/j.drudis.2016.08.004

C. Xu, B. Poirier, and J. P. Duong-van-huyen, Modulation of Endothelial Cell Function by Normal Polyspecific Human Intravenous Immunoglobulins, The American Journal of Pathology, vol.153, issue.4, p.1257, 1998.
DOI : 10.1016/S0002-9440(10)65670-2

C. Galeotti, S. V. Kaveri, and J. Bayry, Molecular and immunological biomarkers to predict IVIg response, Trends in Molecular Medicine, vol.21, issue.3, p.145, 2015.
DOI : 10.1016/j.molmed.2015.01.005

URL : https://hal.archives-ouvertes.fr/hal-01117084

J. Bayry, H. P. Hartung, and S. V. Kaveri, IVIg for relapsing???remitting multiple sclerosis: promises and uncertainties, Trends in Pharmacological Sciences, vol.36, issue.7, p.419, 2015.
DOI : 10.1016/j.tips.2015.04.012

URL : https://hal.archives-ouvertes.fr/hal-01155485