A. L. Afendikov and A. Mielke, Dynamical Properties of Spatially Non-Decaying 2D Navier?Stokes Flows with Kolmogorov Forcing in an Infinite Strip, Journal of Mathematical Fluid Mechanics, vol.7, issue.S1, pp.51-67, 2005.
DOI : 10.1007/s00021-004-0131-9

S. [. Anthony and . Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited, Communications on Pure and Applied Analysis, vol.13, issue.4, pp.1361-1393, 2014.
DOI : 10.3934/cpaa.2014.13.1361

G. K. Batchelor, The Theory of Homogeneous Turbulence, 1982.

S. [. Brze´zniakbrze´zniak and . Cerrai, Large deviations principle for the invariant measures of the 2D stochastic Navier???Stokes equations on a torus, Journal of Functional Analysis, vol.273, issue.6, pp.1891-1930, 2017.
DOI : 10.1016/j.jfa.2017.05.008

J. Bricmont, A. Kupiainen, and R. Lefevere, Exponential mixing of the 2D stochastic Navier?Stokes dynamics, Communications in Mathematical Physics, vol.230, issue.1, pp.87-132, 2002.
DOI : 10.1007/s00220-002-0708-1

A. Boritchev, Sharp Estimates for Turbulence in White-Forced Generalised Burgers Equation, Geometric and Functional Analysis, vol.9, issue.11, pp.1730-1771, 2013.
DOI : 10.1007/BFb0082007

URL : https://hal.archives-ouvertes.fr/hal-00824732

A. [. Bouchet and . Venaille, Statistical mechanics of two-dimensional and geophysical flows, Physics Reports, vol.515, issue.5, pp.227-295, 2012.
DOI : 10.1016/j.physrep.2012.02.001

URL : https://hal.archives-ouvertes.fr/hal-00636610

I. Chueshov and A. Millet, Stochastic 2D hydrodynamical type systems: Wellposedness and large deviations, Appl. Math. Optim, issue.3, pp.61-379, 2010.
DOI : 10.1007/s00245-009-9091-z

S. [. Donsker and . Varadhan, Asymptotic evaluation of certain markov process expectations for large time, II, Communications on Pure and Applied Mathematics, vol.28, issue.2, pp.1-47, 1975.
DOI : 10.1002/cpa.3160280206

W. E. , J. C. Mattingly, and Y. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier?Stokes equation, Comm. Math. Phys, vol.224, issue.1, pp.83-106, 2001.

]. F. Fla94 and . Flandoli, Dissipativity and invariant measures for stochastic Navier?Stokes equations, NoDEA Nonlinear Differential Equations Appl, vol.1, issue.4, pp.403-423, 1994.

F. Flandoli and B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations, Communications in Mathematical Physics, vol.42, issue.1, pp.119-141, 1995.
DOI : 10.1007/978-1-4684-0313-8

G. [. Foia¸sfoia¸s and . Prodi, Sur le comportement global des solutions nonstationnaires deséquationsdeséquations de Navier?Stokes en dimension 2, Rend. Sem. Mat. Univ. Padova, vol.39, pp.1-34, 1967.

M. I. Freidlin and A. D. , Random Perturbations of Dynamical Systems

G. Gallavotti, Foundations of Fluid Dynamics, 2002.

Y. Giga, S. Matsui, and O. Sawada, Global Existence of Two-Dimensional Navier???Stokes Flow with Nondecaying Initial Velocity, Journal of Mathematical Fluid Mechanics, vol.3, issue.3, pp.302-315, 2001.
DOI : 10.1007/PL00000973

V. [. Glatt-holtz, V. Sverak, and . Vicol, On Inviscid Limits for the Stochastic Navier???Stokes Equations and Related Models, Archive for Rational Mechanics and Analysis, vol.52, issue.7, pp.619-649, 2015.
DOI : 10.1002/(SICI)1097-0312(199907)52:7<781::AID-CPA1>3.0.CO;2-C

M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier???Stokes equations with degenerate stochastic forcing, Annals of Mathematics, vol.164, issue.3, pp.993-1032, 2006.
DOI : 10.4007/annals.2006.164.993

V. Jak?i´jak?i´c, V. Nersesyan, C. Pillet, and A. Shirikyan, Large Deviations from a Stationary Measure for a Class of Dissipative PDEs with Random Kicks, Communications on Pure and Applied Mathematics, vol.91, issue.2, pp.2108-2143, 2015.
DOI : 10.1016/S0304-4149(00)00061-2

Y. Yu and . Klevtsova, On the rate of convergence of distributions of solutions to the stationary measure as t ? +? for the stochastic system of the Lorenz model describing a baroclinic atmosphere, Mat. Sb, vol.208, issue.7, pp.19-67, 2017.

S. Kuksin, V. Nersesyan, and A. Shirikyan, Exponential mixing for a class of dissipative PDEs with bounded degenerate noise, 2018.

O. [. Kuksin and . Penrose, A family of balance relations for the twodimensional Navier?Stokes equations with random forcing, J. Statist. Phys, vol.118, pp.3-4, 2005.

S. [. Karatzas and . Shreve, Brownian Motion and Stochastic Calculus, 1991.

A. [. Kuksin and . Shirikyan, Stochastic Dissipative PDE's and Gibbs Measures, Communications in Mathematical Physics, vol.213, issue.2, pp.291-330, 2000.
DOI : 10.1007/s002200000237

URL : http://www.ma.hw.ac.uk/~kuksin/art.ps

]. S. Kuk02a and . Kuksin, Ergodic theorems for 2D statistical hydrodynamics, Rev. Math. Phys, vol.14, issue.6, pp.585-600, 2002.

F. Ledrappier, Positivity of the exponent for stationary sequences of matrices, Lyapunov Exponents, pp.56-73, 1984.

[. Lemarié-rieusset, Recent Developments in the Navier?Stokes Problem, 2002.
DOI : 10.1201/9781420035674

]. D. Mar17a and . Martirosyan, Large deviations for invariant measures of whiteforced 2D Navier?Stokes equation, J. Evol. Equ, 2017.

]. J. Mat02 and . Mattingly, Exponential convergence for the stochastically forced Navier?Stokes equations and other partially dissipative dynamics, Comm. Math. Phys, vol.230, issue.3, pp.421-462, 2002.

V. [. Martirosyan and . Nersesyan, Local large deviations principle for occupation measures of the damped nonlinear wave equation perturbed by a white noise, Ann. Inst. H. Poincaré Probab. Statist, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01151973

]. V. Ner17 and . Nersesyan, Large deviations for the Navier?Stokes equations driven by a white-in-time noise, 2018.

C. Odasso, Exponential mixing for stochastic PDEs: the non-additive case, Probab. Theory Related Fields, pp.41-82, 2008.
DOI : 10.1007/s00440-007-0057-2

URL : http://arxiv.org/pdf/math/0505502

]. A. Shi05 and . Shirikyan, Ergodicity for a class of Markov processes and applications to randomly forced PDE's. I, Russ, J. Math. Phys, vol.12, issue.1, pp.81-96, 2005.

G. A. Varner, Stochastically Perturbed Navier?Stokes System on the Rotating Sphere

]. S. Zel13 and . Zelik, Infinite energy solutions for damped Navier-Stokes equations in R 2, J. Math. Fluid Mech, vol.15, issue.4, pp.717-745, 2013.