A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, and M. Picantin, ON THE FINITENESS PROBLEM FOR AUTOMATON (SEMI)GROUPS, International Journal of Algebra and Computation, vol.22, issue.06, p.26, 2012.
DOI : 10.1142/S021819671250052X

URL : https://hal.archives-ouvertes.fr/hal-00695445

A. S. Antonenko, On transition functions of Mealy automata of finite growth, Matematychni Studii, vol.29, issue.1, pp.3-17, 2008.

A. S. Antonenko and E. L. Berkovich, Groups and semigroups defined by some classes of Mealy automata, Acta Cybernetica, vol.18, issue.1, pp.23-46, 2007.

L. Bartholdi and P. Silva, Groups defined by automata, 2010.

I. Bondarenko, N. Bondarenko, S. Sidki, and F. Zapata, On the conjugacy problem for finite-state automorphisms of regular rooted trees (with an appendix by Raphaël M. Jungers). Groups Geom, Dyn, vol.7, issue.2, pp.323-355, 2013.

A. Cain, Automaton semigroups, Theoretical Computer Science, vol.410, issue.47-49, pp.47-49, 2009.
DOI : 10.1016/j.tcs.2009.07.054

URL : http://doi.org/10.1016/j.tcs.2009.07.054

S. De-felice and C. Nicaud, Random Generation of Deterministic Acyclic Automata Using the Recursive Method, Proc. 8th CSR, pp.88-99, 2013.
DOI : 10.1007/978-3-642-38536-0_8

URL : https://hal.archives-ouvertes.fr/hal-00841835

J. D. Dixon, The probability of generating the symmetric group, Mathematische Zeitschrift, vol.18, issue.3, pp.199-205, 1969.
DOI : 10.1007/BF01110210

P. Gillibert, The finiteness problem for automaton semigroups is undecidable. arXiv:cs.FL/1304, p.2295, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00809295

R. Grigorchuk, V. Nekrashevich, and V. Sushchanski?-i, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova, vol.231, pp.134-214, 2000.

A. Jaikin-zapirain and L. Pyber, Random generation of finite and profinite groups and group enumeration, Annals of Mathematics, vol.173, issue.2, pp.769-814, 2011.
DOI : 10.4007/annals.2011.173.2.4

I. Klimann, The finiteness of a group generated by a 2-letter invertible-reversible Mealy automaton is decidable, Proc. 30th STACS, pp.502-513, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875177

I. Klimann, J. Mairesse, and M. Picantin, Implementing Computations in Automaton (Semi)groups, Proc. 17th CIAA, pp.240-252, 2012.
DOI : 10.1007/978-3-642-31606-7_21

V. Maltcev, CAYLEY AUTOMATON SEMIGROUPS, International Journal of Algebra and Computation, vol.19, issue.01, pp.79-95, 2009.
DOI : 10.1142/S021819670900497X

A. Mintz, ON THE CAYLEY SEMIGROUP OF A FINITE APERIODIC SEMIGROUP, International Journal of Algebra and Computation, vol.19, issue.06, pp.723-746, 2009.
DOI : 10.1142/S0218196709005378

V. Nekrashevych, Self-similar groups, of Mathematical Surveys and Monographs, 2005.
DOI : 10.1090/surv/117

A. Russyev, Finite groups as groups of automata with no cycles with exit, Algebra and Discrete Mathematics, vol.9, issue.1, pp.86-102, 2010.

D. Savchuk and Y. Vorobets, Automata generating free products of groups of order 2, Journal of Algebra, vol.336, issue.1, pp.53-66, 2011.
DOI : 10.1016/j.jalgebra.2011.02.049

S. Sidki, Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity, Journal of Mathematical Sciences, vol.68, issue.No. 2, pp.1925-1943, 2000.
DOI : 10.1007/BF02677504

P. Silva and B. Steinberg, ON A CLASS OF AUTOMATA GROUPS GENERALIZING LAMPLIGHTER GROUPS, International Journal of Algebra and Computation, vol.15, issue.05n06, pp.5-6, 2005.
DOI : 10.1142/S0218196705002761

B. Steinberg, M. Vorobets, Y. Z. Vorobets, and E. Ventura, AUTOMATA OVER A BINARY ALPHABET GENERATING FREE GROUPS OF EVEN RANK, International Journal of Algebra and Computation, vol.21, issue.01n02, pp.329-354, 2011.
DOI : 10.1142/S0218196711006194