In-mold patterning and actionable axo-somatic compartmentalization for on-chip neuron culture

Abstract : Oriented neuronal networks with controlled connectivity are required for many applications ranging from studies of neurodegeneration to neuronal computation. To build such networks in vitro, an efficient, directed and long lasting guidance of axons toward their target is a prerequisite. The best guidance achieved so far, however, relied on confining axons in enclosed microchannels, making them poorly accessible for further investigation. Here we describe a method providing accessible and highly regular arrays of axons, emanating from soma positioned in distinct compartments. This method combines the use of a novel removable partition, allowing soma positioning outside of the axon guidance patterns, and in-mold patterning (iMP), a hybrid method combining chemical and mechanical cell positioning clues applied here for the first time to neurons. The axon guidance efficiency of iMP is compared to that of conventional patterning methods, e.g. micro-contact printing (chemical constraints by a poly-L-lysine motif) and micro-grooves (physical constraints by homogeneously coated microstructures), using guiding tracks of different widths and spacing. We show that iMP provides a gain of 10 to 100 in axon confinement efficiency on the tracks, yielding mm-long, highly regular, and fully accessible on-chip axon arrays. iMP also allows well-defined axon guidance from small populations of several neurons confined at predefined positions in µm-sized wells. iMP will thus open new routes for the construction of complex and accurately controlled neuronal networks.
Document type :
Journal articles
Complete list of metadatas

Cited literature [20 references]  Display  Hide  Download

https://hal.sorbonne-universite.fr/hal-01324932
Contributor : Gestionnaire Hal-Upmc <>
Submitted on : Wednesday, June 1, 2016 - 4:13:51 PM
Last modification on : Friday, October 11, 2019 - 8:23:23 PM
Long-term archiving on : Friday, September 2, 2016 - 10:41:52 AM

File

Yamada_2016_In-mold_patterning...
Files produced by the author(s)

Identifiers

Citation

Ayako Yamada, Maéva Vignes, Cécile Bureau, Alexandre Mamane, Bastien Venzac, et al.. In-mold patterning and actionable axo-somatic compartmentalization for on-chip neuron culture. Lab on a Chip, Royal Society of Chemistry, 2016, 16 (11), pp.2059-2068. ⟨10.1039/C6LC00414H⟩. ⟨hal-01324932⟩

Share

Metrics

Record views

688

Files downloads

686