Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351




A partir de cette page, vous pouvez :
    • Accéder au site de la Bibliothèque du laboratoire
    • Consulter l'ensemble des dépôts du laboratoire grâce au menu de gauche
    • Déposer des publications sur HAL ou sur HAL UNICE

 

DERNIERS DÉPÔTS

 


 

NOMBRE DE DOCUMENTS

2 236

NOMBRE DE NOTICES

1 459

EVOLUTION DES DÉPÔTS

RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT

MOTS CLÉS

Finite element Rheology Magnetohydrodynamics Bifurcation theory Image segmentation Hybridizable discontinuous Galerkin method Normal form Coextrusion Game theory NAVIER-STOKES EQUATIONS Bifurcations Finite volumes Aerodynamics Periodic solutions Nonlinear water waves Domain decomposition Homotopical algebra VOLUMES FINIS Simulation Centre Finite volume Convexity Shape optimization Nanophotonics Turbulence Maxwell's equations Nonlinear elliptic equations Blow-up Parallel computing Équations de Maxwell Convergence Synchronization Finite volume schemes Homogenization Discontinuous Galerkin methods Solitary waves SHAPE OPTIMIZATION Gibbs distributions Saint-Venant Seismic imaging Hydrostatic reconstruction Convergence analysis Maxwell equations Finite volume methods Friction Adaptive estimation Large deviations Duality Harmonic domain Optimization Descent direction Elastic waves Source terms Stability Chaos Normal forms Discontinuous Galerkin Segmentation Model selection Interacting particle systems Operad Consistency Implicitization Finite volume method Optimal control Operator splitting Stabilité Conservation laws Operads Water waves Inverse problem Density estimation Modélisation PDE Boundary conditions Small divisors Numerical analysis Euler equations Finite volume scheme Chemotaxis Entropy solution Finite element method Finite elements Combinatorial enumeration Hyperbolic systems Inverse problems Tokamak Well-balanced scheme Fault-tolerance Scalar conservation laws Discontinuous Galerkin method ALE FORMULATION Green-Kubo formula CFD Shallow water equations Shallow water Complexity Workflows A priori estimates Dynamical systems