Bienvenue dans la collection du Laboratoire de Mathématiques
J.A. Dieudonné - UMR 7351




A partir de cette page, vous pouvez :
    • Accéder au site de la Bibliothèque du laboratoire
    • Consulter l'ensemble des dépôts du laboratoire grâce au menu de gauche
    • Déposer des publications sur HAL ou sur HAL UNICE

 

DERNIERS DÉPÔTS

 


 

NOMBRE DE DOCUMENTS

2 126

NOMBRE DE NOTICES

1 400

EVOLUTION DES DÉPÔTS

RÉPARTITION DES DÉPÔTS PAR TYPE DE DOCUMENT

MOTS CLÉS

Green-Kubo formula Discontinuous Galerkin methods Workflows Segmentation Modélisation Periodic solutions Model selection Density estimation A priori estimates Scalar conservation laws Large deviations Domain decomposition Aerodynamics Nonlinear elliptic equations Parallel computing Stability Operator splitting Game theory Bifurcation theory Finite volumes Finite volume Inverse problems Normal form SHAPE OPTIMIZATION Discontinuous Galerkin Combinatorial enumeration Conservation laws Fault-tolerance Optimal control Friction Nanophotonics Nonlinear vibrations Complexity Finite volume method Finite element method Well-balanced scheme Centre Chemotaxis NAVIER-STOKES EQUATIONS Image segmentation Gibbs distributions Discontinuous Galerkin method Hydrostatic reconstruction Homotopical algebra Convergence analysis Source terms Nonlinear water waves Finite volume scheme Operads Shallow water Seismic imaging Water waves Simulation Solitary waves Saint-Venant Coextrusion Duality Hybridizable discontinuous Galerkin method Implicitization Euler equations Operad Interacting particle systems Finite elements Adaptive estimation Descent direction ALE FORMULATION Shallow water equations Magnetohydrodynamics Maxwell equations Finite volume methods Blow-up Hyperbolic systems Inverse problem VOLUMES FINIS Équations de Maxwell Numerical analysis Shape optimization Tokamak Dynamical systems Turbulence Finite volume schemes Koszul duality Modeling Finite element Bifurcations Optimization Synchronization Rheology Harmonic domain Convexity Chaos Level sets Small divisors Isogeometric analysis Linearization Normal forms Maxwell's equations Consistency Elastic waves Convergence