Efficient approximations of RNA kinetics landscape using non-redundant sampling

Juraj Michálik 1 Hélène Touzet 2, 1 Yann Ponty 3, 4
2 BONSAI - Bioinformatics and Sequence Analysis
Université de Lille, Sciences et Technologies, Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189, CNRS - Centre National de la Recherche Scientifique
3 AMIB - Algorithms and Models for Integrative Biology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : Motivation: Kinetics is key to understand many phenomena involving RNAs, such as co-transcriptional folding and riboswitches. Exact out-of-equilibrium studies induce extreme computational demands, leading state-of-the-art methods to rely on approximated kinetics landscapes, obtained using sampling strategies that strive to generate the key landmarks of the landscape topology. However, such methods are impeded by a large level of redundancy within sampled sets. Such a redundancy is uninformative, and obfuscates important intermediate states, leading to an incomplete vision of RNA dynamics. Results: We introduce RNANR, a new set of algorithms for the exploration of RNA kinetics landscapes at the secondary structure level. RNANR considers locally optimal structures, a reduced set of RNA con-formations, in order to focus its sampling on basins in the kinetic landscape. Along with an exhaustive enumeration, RNANR implements a novel non-redundant stochastic sampling, and offers a rich array of structural parameters. Our tests on both real and random RNAs reveal that RNANR allows to generate more unique structures in a given time than its competitors, and allows a deeper exploration of kinetics landscapes. Availability: RNANR is freely available at https://project.inria.fr/rnalands/rnanr
Type de document :
Communication dans un congrès
ISMB/ECCB - 25th Annual international conference on Intelligent Systems for Molecular Biology/16th European Conference on Computational Biology - 2017, Jul 2017, Prague, Czech Republic. Bioinformatics, 33 (14), pp.i283 - i292, 2017, 〈https://www.iscb.org/ismbeccb2017〉. 〈10.1093/bioinformatics/btx269〉
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01500115
Contributeur : Yann Ponty <>
Soumis le : dimanche 2 avril 2017 - 12:38:13
Dernière modification le : jeudi 10 mai 2018 - 02:06:08
Document(s) archivé(s) le : lundi 3 juillet 2017 - 13:15:31

Fichier

michalik-ISMB-2017.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Citation

Juraj Michálik, Hélène Touzet, Yann Ponty. Efficient approximations of RNA kinetics landscape using non-redundant sampling. ISMB/ECCB - 25th Annual international conference on Intelligent Systems for Molecular Biology/16th European Conference on Computational Biology - 2017, Jul 2017, Prague, Czech Republic. Bioinformatics, 33 (14), pp.i283 - i292, 2017, 〈https://www.iscb.org/ismbeccb2017〉. 〈10.1093/bioinformatics/btx269〉. 〈hal-01500115〉

Partager

Métriques

Consultations de la notice

821

Téléchargements de fichiers

105